TANDON SCHOOL
OF ENGINEERING

NYU

Theory and Practice in Blockchain Security:
A CTF-Based Exploration of Blockchain
Vulnerabilities

Final Project
Introduction to Blockchain and Distributed Ledger Technology

Rohan Ahuja & Mauro de los Santos
December 23, 2023

Contents

1

2

Introduction 1
Theoretical Exploration of the Vulnerabilities 2
2.1 Imteger overflow L e 2
2.1.1 Understanding Integer Overflow 2
2.1.2 Integer Overflow in Solidity 2
2.1.3 Mitigating Integer Overflow L o 2
2.2 Misuse of tx.origin L e e 2
2.2.1 Understanding the misuse of tx.origin vulnerability 2
2.2.2 The misuse of tx.origin vulnerability in Solidity 2
2.2.3 Mitigating the misuse of tx.origin vulnerability 3
2.3 Beyond the Scope. e 3
Blockchain CTF Infrastructure Setup 4
3.1 Cloud-Based Infrastructure 4
3.2 Implementing a Testnet Challenge 4
3.3 The Foundations L 4
3.3.1 Blockchains L 4
3.3.2 Deployment Procedureo 5
3.3.3 CTFEd e 5
3.4 The Default Challenge: Infrastructure Interaction Overview 6
Exploiting the Vulnerabilities 10
4.1 Integer Overflow Challenge: Step-by-Step Walkthrough 10
4.2 tx.origin Misuse Challenge: Detailed Walkthrough 12
Conclusion 17
5.1 Key Learnings and Insights L o 17
5.2 Future Directions and Improvements L. 18

5.3 Acknowledgements oL 18

1 Introduction

In this research paper, we present our final project for the Blockchain course, aiming to deepen our
understanding of Blockchain security. Having spent a semester delving into Blockchain, ranging from
foundational concepts to advanced topics, we integrate this knowledge with our primary focus on
cybersecurity. This synergy forms the basis of our exploration into the security vulnerabilities inherent
in Blockchain technology.

A significant emphasis of our research is on the security flaws prevalent in Smart Contracts and
Solidity, along with the risks arising from improper Blockchain configuration or usage. Such vulnerabil-
ities pose threats to the Confidentiality, Integrity, and Availability (CIA) of data, potentially impacting
end-users.

Our project is structured into two principal sections. The first, delineated in Chapter 2, provides a
theoretical framework. Here, we begin by elucidating the underlying concepts that give rise to various
vulnerabilities. This discussion extends to examining potential consequences and discussing effective
mitigation strategies.

The second section, detailed in Chapter 4, adopts a practical approach towards Blockchain security.
Leveraging Capture The Flag (CTF) methodologies, we design, deploy, and solve a series of challenges
that exploit the vulnerabilities discussed earlier. This hands-on segment aims to demonstrate the
process of identifying and exploiting these vulnerabilities, underscoring their real-world implications.

Additionally, we intend to keep the CTF infrastructure (detailed in Chapter 3) accessible to the
public. This will serve as both an academic resource and a practical tool for learning about Blockchain
security and safeguarding Blockchain systems.

2 Theoretical Exploration of the Vulnerabilities

In this section, we embark on a comprehensive examination of various Blockchain vulnerabilities. These
security flaws, which we will later replicate and exploit through specially designed CTF challenges, are
pivotal to understanding the practical implications of theoretical concepts in Blockchain security.

The primary objective of this section is threefold:

1. Conceptual Clarity: We will dissect each vulnerability to unravel the underlying concepts.
This involves probing into the root causes of these security flaws, thereby illuminating the reasons
behind their occurrence.

2. Identification Mechanisms: Equipped with theoretical insights, we will delineate methodolo-
gies and tools essential for recognizing these vulnerabilities. This step is crucial for preemptive
detection and response in real-world scenarios.

3. Mitigation Strategies: Understanding a vulnerability is incomplete without exploring its coun-
termeasures. We will delve into potential mitigation techniques, setting the groundwork for en-
hancing Blockchain security and resilience.

By establishing a solid theoretical foundation, this section aims to provide a comprehensive un-
derstanding of Blockchain vulnerabilities. This knowledge is not only instrumental for the subsequent
practical exercises but also vital for anyone looking to fortify Blockchain systems against evolving
security threats.

2.1 Integer overflow
2.1.1 TUnderstanding Integer Overflow

An Integer Overflow occurs when an arithmetic operation exceeds the maximum value that can be
represented in a given number of bits, causing the value to wrap around. This phenomenon is critical
in application security and is especially pertinent in Blockchain, where the immutable nature of Smart
Contracts can amplify the implications of such vulnerabilities.

2.1.2 Integer Overflow in Solidity

Solidity, Ethereum’s Smart Contract programming language, uses fixed-size integer types. If an arith-
metic operation in Solidity exceeds the limits of these types, it results in a wraparound. This can
be particularly hazardous in financial contexts, where it might lead to unintentional manipulation of
balances or token quantities.

2.1.3 Mitigating Integer Overflow

With the release of Solidity version 0.8.0, arithmetic operations automatically check for overflows,
reverting the transaction if one is detected. For contracts written in earlier versions, developers can
use the SafeMath library to ensure safe arithmetic operations. The absence of such safeguards in older
contracts can expose them to potential exploits.

2.2 Misuse of tx.origin
2.2.1 Understanding the misuse of tx.origin vulnerability

The tx.origin vulnerability arises from a misunderstanding of Ethereum’s transaction properties, par-
ticularly the difference between tx.origin and msg.sender.

tx.origin refers to the original initiator of a transaction. In a chain of contract calls, it always points
to the external account that started the transaction, not the immediate caller. On the other hand,
msg.sender refers to the immediate sender of the message. In a chain of calls, msg.sender can be either
an external account or a contract.

2.2.2 The misuse of tx.origin vulnerability in Solidity

The vulnerability occurs when a contract uses tx.origin to perform authentication checks, instead of
msg.sender. An attacker can exploit this by interacting with a vulnerable contract through another
contract, thus making tx.origin (the attacker’s address) differ from msg.sender (the attacking contract’s
address).

2.2.3 Mitigating the misuse of tx.origin vulnerability

The primary mitigation strategy is avoiding the use of tx.origin for authentication purposes. Smart
contract developers are advised to use msg.sender for all authentication checks. This simple yet effective
change can prevent the exploitation of this vulnerability.

2.3 Beyond the Scope

While this project delves into two specific vulnerabilities, integer overflow and tx.origin misuse, it is
important to recognize that the realm of Blockchain technology is vast and potentially harbors numerous
other vulnerabilities. The exploration of these two vulnerabilities serves as a starting point, but the
responsibility extends to the reader to further investigate the diverse array of security flaws that may
exist in Blockchain systems. Developing a robust security mindset involves not only understanding
identified vulnerabilities but also proactively seeking out and learning how to identify, exploit, and
mitigate a broader spectrum of potential threats. For those eager to expand their knowledge beyond
the confines of this document, a wealth of information can be found in our key reference, which has been
instrumental in the conception and development of this project [5]. This resource offers an in-depth
exploration into various Blockchain vulnerabilities, serving as an excellent guide for those aspiring to
deepen their understanding and expertise in Blockchain security.

3 Blockchain CTF Infrastructure Setup

A foundational element of this paper is the meticulous deployment of infrastructure essential for hosting
the CTF challenges and facilitating the deployment and exploitation of vulnerable Smart Contracts.
This task necessitates a thorough comprehension of Blockchain technology, including an understanding
of Public vs. Private chains, transaction mechanics, genesis blocks, and concepts such as faucets and gas
pricing. Although this component does not directly delve into the vulnerabilities, it is the cornerstone
that enables the practical exploration and contextual grounding of our research.

3.1 Cloud-Based Infrastructure

Our infrastructure strategy emphasizes a cloud-based approach, leveraging a suite of AWS services to
ensure best practices in scalability, security, and efficiency. Key services include:

e TAM Roles and Users: To manage access and security effectively.
e Budget and Price Management Tools: For cost-effective resource utilization.
e AMI Snapshots: To facilitate rapid deployment and scalability.

e EC2 Instances: Serving as the backbone of our infrastructure, these instances will host our
Blockchain networks and Smart Contracts, as well as out CTFd environment.

3.2 Implementing a Testnet Challenge

We will also provide a comprehensive guide on setting up a challenge from scratch on the Sepolia
testnet. This will encompass the development, deployment, and debugging stages of a Smart Contract.
This step-by-step overview will not only serve as a practical guide but also as an illustration of the
theoretical concepts in a real-world scenario. See 3.4 for more details.

3.3 The Foundations

Before delving into the highly technical aspects, it is essential to establish the foundational elements
of our infrastructure. This encompasses two main components: the EC2 instances that will host our
challenges, includin Blockchain networks with vulnerable contracts, and the CTFd infrastructure, which
will serve as the front-end web interface for participants.

3.3.1 Blockchains

The cornerstone of the Blockchain component of our infrastructure is based on a template available
on GitHub [4]. This template provides a structured framework essential for developing and deploying
challenges. An overview of the key elements in this framework is as follows:

e Contracts Folder: This directory houses the Solidity files containing our vulnerable contracts.

e .env File: Contains the Blockchain RPC endpoint, which could be a localhost address pointing
to our private Blockchain deployed in a container, or a public testnet RPC like Sepolia.

e challenge.yml: Specifies challenge details such as description, contract class name, constructor
parameters, and an option to display contract source code to users.

e docker-compose.yml: Manages the deployment of three key services in separate containers:

1. The challenge container.
2. A private blockchain using Geth.

3. A Faucet container for ETH distribution in the private blockchain.
Understanding these containers is crucial for comprehending the infrastructure’s underpinnings.

e flag.txt: Contains the challenge’s flag, which links the Blockchain and CTFd components of the
infrastructure.

3.3.2 Deployment Procedure

The deployment involves several steps [3]:

1. Clone the Template: Utilize git clone to create a new challenge project from the provided
template.

2. Develop the Contract: Navigate to the contract directory, code the challenge contract with
an isSolved() function, and replace the example contract. For multi-contract challenges, deploy
them in the setup contract’s constructor.

3. Configure the Challenge: Edit the challenge.yml file to set up your challenge. Refer to the
file’s comments for detailed configuration instructions.

4. Set the Flag and Keys: Place your flag in the flag.txt file and update the private key in the
.env file.

5. Launch the Challenge: Execute docker-compose pull && docker-compose up -d to start
the challenge.

This structure not only ensures a systematic approach to challenge deployment but also integrates
essential elements for a comprehensive and secure Blockchain testing environment.

3.3.3 CTFd

CTFd is a Capture The Flag (CTF) framework designed for easy use and customization [2]. It pro-
vides a comprehensive set of features to run CTF competitions effortlessly. Key features include the
ability to create challenges, categories, hints, and flags through a user-friendly Admin Interface. CTFd
supports dynamic scoring challenges, unlockable challenges, and offers a plugin architecture for custom
challenges. It allows file uploads to the server or an Amazon S3-compatible backend, implements au-
tomatic bruteforce protection, and supports individual or team-based competitions. With features like
scoreboard, scoregraphs, and team management, CTFd provides a versatile platform for organizing and
participating in CTF events.

CTFd Setup We used the available docker containers for the various subcomponents and installed
them on our Ubuntu 22 EC2. Follwing are the high-level steps involved:

Setup EC2: Spin up an EC2 Ubuntu instance.

Setup Docker: Install docker and other dependencies on the Ubuntu VM

Setup CTfd: Clone the CTFd repo, pull the required docker containers, setup sub components
such as Maria DB, redis, CTFd frontend etc. and update the congif.ini with the components.

e Run CTFd: Use docker-compose to bring up all the components.

CTFe>

A cool CTF platform from ctfd.io

Follow us on social media:

yoo

Click here to login and setup your CTF

Figure 1: CTFd Home Screen

Setup Challenges on CTFd Once the CTFd and the challenges are up (described in further sec-
tions), we can use the CTFd Admin Panel to setup the challenges. This includes defining the flags,
challenge points, connection details, and hints. This will be the first place of interaction with all the
participants

Challenges

Intro to Smart Contracts

Smart Contracts

Figure 2: CTFd Deployed Challenges

3.4 The Default Challenge: Infrastructure Interaction Overview

To demonstrate the functionality of our deployed infrastructure and to provide an introductory expe-
rience for first-time CTF participants, we designed a default challenge. This section outlines the steps
involved in interacting with and exploiting this challenge, illustrating the effective use of our setup.

Initial Connection Participants start by accessing the CTFd interface and the EC2 instance hosting
our Docker containers, as shown in Figures 3 and 4.

Challenge 1 Solve

Lets Get Going
50

Canyou make the isSolved() function return true? Thisis a
intro challenge to to get to know things! All the best!!!

e Eo s 1A 187 SeEEm
C 52.96.103.107 2@eee

» Unlock Hint for O points

Flag ‘ Submit ‘
Correct

Figure 3: CTFd first screen.

Figure 4: Docker containers deployed.

Environment Configuration The challenge environment includes the following key configurations:
e .env File: Specifies the Sepolia RPC URL and our private key.
e Contracts Directory: Contains a vulnerable smart contract.
e challenge.yml: Details the challenge description and parameters.

e flag.txt: Holds the challenge’s flag.

Verifying Container States We first verify the geth container’s state, confirming the genesis block
creation and subsequent block mining:

1d updated

1d updated

Figure 5: Initial blocks mining in the private Blockchain.

We also examine the faucet container Web GUI and use Geth to access blockchain details:

© ETH Testnet Faucet x|+
O D 127.0.01

= ETH Faucet

Receive 1ETH per request

Serving from OxEc469E9473fBbA97A2EE923b4A6dAc697Dcf3bDE

‘: OxcE4374f3B241addF510430AfB5939A26f3018045 :‘ @

Figure 6: Faucet Web GUI functionality check.

/home/kali/proj_blockchain/go-ethereum

Figure 7: Accessing the blockchain via Geth.

Challenge Interaction Participants connect to the challenge endpoint and follow the instructions
to create an account and transfer ETH for challenge continuation:

/home/kali/proj_blockchain
20000
() function return true? Thi

Figure 8: Connecting to the default challenge.

Send

Status

Confirmed

From

@ oonesr

Transaction
Nonce

Amount

Gas Limit (Units|

Gas Used (Units)

B

Priority fee

Tota

Max fee per gas

Tota

on block explorer

tion ID

Copy trans

To

@ ossea

29

-0.1 SepoliacETH

21000

21000

34.5154£2897

1.5

0.000754 SepoliaETH
0.000000047 SepoliagETH

0.10075633 SepoliaETH

Figure 9: Sending ETH to the recently created account.

Contract Deployment and Interaction The next step involves deploying the vulnerable contract

and verifying it on Etherscan:

/home/kali/proj_blockehain

on return true? This is

a intrc

lenge to to get to know things! All the best!!!

Figure 10: Deploying the vulnerable

@ Etherscan

. Contract 0x60E367Fb6D5ddfc52327€7bE0A27Fb62E3d0dA9

Overview More Info

ETH BALANCE
$0ETH

w Token Transfers (ERC-20) Contract Events

I Latest 1 from a total of 1 transactions

@ Transaction Hash Method Block

Age

® 0x8fbaB9ad78622cc65. 0x60806040 492020 10 secs ago

attx

n 0x8fbaB9ad78622cc65.

From

0X56E03F..B7944B2b

w

Home Blockchain v

Multi Chain

MULTICHAIN ADDRI

N/

To

A

Contract Creation

Tokens v

Value

0ETH

Figure 11: Verifying in Etherscan the new contract.

Participants retrieve the contract’s source code for exploitation:

contract to Sepolia with our new account.

NFTs v Misc v

More +

Tan Fee

0.01100284

return true? This is a intro challe to to get to know things! All the best

function
gr

functi i
ring memor
rn k i e e)) i.encc cked(greeting));

Figure 12: Getting the source code of the contract.
Using Remix, participants exploit the contract to solve the challenge:

0x60E367Fb6DSddc

setGreeting

"HelloChainFlag"

Figure 13: Solving the default challenge from Remix.

Retrieving the Flag Upon successful exploitation, participants can retrieve the flag:

/home/kali/proj_blockchain

nt
the challe
r fl, once y

gr5d9zLNLMgH4EOHCT

Figure 14: Solving the default challenge.

Finally, the flag is submitted to CTFd to complete the challenge:

Challenge 1Solve
Name Date

Maurc's Team December 21st, 9:12:01 AM

Figure 15: Submitting the flag and getting the points.

This walkthrough not only validates the infrastructure setup but also guides participants through
the process of deploying, interacting with, and exploiting smart contracts on the blockchain.

4 Exploiting the Vulnerabilities

4.1 Integer Overflow Challenge: Step-by-Step Walkthrough

This section illustrates the process of deploying, interacting with, exploiting, and ultimately solving a
real integer overflow challenge on the Sepolia network. This walkthrough serves as a blueprint for the
development of subsequent challenges and their integration with the CTFd platform.

After getting the endpoint address frm CTFd as shown in the previous Section 3.4 with the default
challenge, now the challenge interaction begins again with account creation:

more than 0.001 t

Figure 16: Account creation in the challenge.

Subsequently, we transfer Ether to the new account, confirming its receipt:

Send X

Status

Confirmed Copy transaction ID

From To

@ oo ® ovorce.

Transaction
Nence 25

Amount -0.002 SepoliaETH

00

Gas Limit (Units

21000

1.060452475

Priority fee (GWE 1.5
Total gas fee 0.000054 SepcliaETH
Max fee pergas 0.000000003 SepoliaETH
Total 0.00205377 SepoliaE TH

Figure 17: Transferring ETH to the new account.

The next step involves deploying the vulnerable smart contract:

GULICP3m

oD
504ba3idlb 312 b@dads

Figure 18: Deploying the vulnerable contract.

We confirm the contract deployment on Sepolia’s Etherscan, accesing to its link. The final phase is
the exploitation of the contract’s vulnerability, initially inspecting its state before the exploit:

10

https://sepolia.etherscan.io/address/0x0395cDF290636b89e129889c90DD2fe653299Af0

Figure 19: Pre-exploitation contract state.

In order to get to this point, we need to retrieve the code of the contract using the function number
4 of the contract, to after that, from Remix, using also the load address, be able to interact with it.
Other option would be to verify and publish the smart contract in Etherscan, as we did in class, with
the same purpose. After this, we can interact with the smart contract and the integer overflow is then
executed, adding a value of 5 to the counter:

ON 5 MetaMask Notification = m)
Sepolia test network

At Address 29063608801208 @ ceoccrani. W 00395 95A..

https:/fremix.ethereum.org -

DETAILS HEX

B4 Morket >
0.00007331

Gas [i])
0.00007331 SepoliaETH

Likelyin <30

counter 4 seconds Max fee: 0.00008504 SepoliaETH

0.00007331
0.00007331 SepoliaETH
Amount +gas Max amount:

Total

Low level interactions fee 0.0000850¢ SepelicETH

Ve) ™~ .
{ Reject) Confirm
. /

Figure 20: Executing the buffer overflow.

Following this, we sent the transaction for the overflow to the Sepolia network and we revisit the
challenge to confirm its resolution and retrieve the flag:

ntract

input

input r =1 1 3 NE_yVtOFi OKieGUICP
SRbJ4RITAYE
] F

Figure 21: Challenge resolution and flag retrieval.

This process confirms the successful execution of the integer overflow challenge. We finally, submit
the flag on the CTFd. thereby validating our infrastructure and setting the stage for further challenges.

11

Challenge 1Solve

Simple Overflow
200

Canvyou make the isSolved() function return true?
Overflow for the win.

The contracts are available on:
https://sepolia.etherscan.io/

nc 54.224.213.153 20000

» Unlock Hint for 5 points

ﬂag{b\ockcha\’n—pvrvc‘),jroverﬂovvh ‘ Submit ‘

Correct

Figure 22: Submit the flag on CTFd

The exploration and successful exploitation of the integer overflow vulnerability in this challenge
carry profound implications beyond the confines of a theoretical exercise. It is imperative to recognize
that such vulnerabilities, if present in real-world applications, can lead to substantial and detrimental
consequences. Particularly in the context of blockchain and smart contracts, where financial trans-
actions are often involved, and the stakes are significantly higher. Variables like account balances,
typically represented as unsigned integers (uints), are prime targets for overflow exploits, especially in
contracts developed with vulnerable versions of Solidity or within unchecked code blocks. This challenge
serves not only as an educational tool but also as a stark reminder of the critical need for rigorous se-
curity practices in smart contract development. By understanding and mitigating such vulnerabilities,
developers can safeguard against potentially devastating financial losses and maintain the integrity and
trust in blockchain-based systems, ultimately protecting end users from significant harm.

4.2 tx.origin Misuse Challenge: Detailed Walkthrough

This section offers a detailed guide to deploying, interacting with, exploiting, and ultimately solving a
challenge based on the misuse of tx.origin for ownership verification in smart contracts on the Sepolia
network.

Initial Setup The setup process, including Docker containers, .env file, flag.txt, and challenge.yaml,
follows the same procedure described in Section 3.3.2 and exemplified in Section 4.1.

Challenge Interaction Participants begin again by examining the challenge description on the CTFd
platform.

Challenge 1 Solve

Guess The Owner
200

Can you make the isSolved() function return true? Can
you guess the owner???

.175.74.226 2@

¥ Unlock Hint for O points
What is tx.origin???

Flag ‘ Submit ‘

Figure 23: Initial view of the challenge on CTFd.

12

The first step involves creating an account for the challenge:

/home/kali/proj_blockchain

you e the i ed() function return true? Can you guess the owner???

lenge cont

Figure 24: Creating an account for the challenge.

After account creation, participants send Ether to the new account, as demonstrated in the previous
challenges:

Send X
Status
Confirmed Copy transaction ID
From To

. OxalbBS..7.. . 09CTéz.

Transaction

Nonce al
Amount -0.01SepoliaETH
Gas Limit (Units) 21000
Gas Used [Units) 21000

12.350437848
Priority fee (GWE 1.5
Total gos fee 0.000312 SepoliaETH
Max fee pergas 0.000000021 SepoliaETH
Tota 0.01031184 SepoliaETH

Figure 25: Transferring Ether to the newly created account.

The next step involves deploying the vulnerable contract on Sepolia:

you

Show the contract source code
input i
input r ' B OmH-ssYvHpJAln
i 3 4 cg

t address
tion hash

Figure 26: Deploying the vulnerable contract to Sepolia.

Again, we can verify its correct deployment to the testnet checking it Etherscan address. After this,
participants retrieve the contract’s source code for further interaction:

13

https://sepolia.etherscan.io/address/0xc04154f5c18a999c3ea90dfd45e1c78cb553dcbc

/home/kali/proj_blockchain

he owner???

cont 18

construc
owner

) public {

w returns (bool) {

eturn owner — OxD83E1CE9143A7Fc4be

Figure 27: Obtaining the contract’s source code.
The contract is then imported into Remix for interaction:
Oxalb..78CED (1.8032988

3000000

DxC04154F5C182998¢

Figure 28: Importing the contract into Remix.

Initial attempts to change the contract’s owner directly via Remix do not succeed:

1CE9143A7Foabbt

transact

Figure 29: Unsuccessful attempt to solve the challenge directly.

14

Additionally, attempting to directly retrieve the flag via the console is also unsuccessful.

he owner???

ount which will be used to dep E alle ontract
e challenge 1 €

input C 2
input r . al. S5 HhQUORUPOEDN

Figure 30: Unsuccessful attempt to get the flag directly.

A review of the theoretical vulnerability in Section 2 leads to the development of a custom exploit:

& Exploit-3.sol X

Figure 31: Crafting the exploit in Solidity.

The exploit is then deployed to Sepolia:

Contract deployment X
Status View on block explorer
Confirmed Copy transaction ID
From To
. OxalbBE...7... New contract

Transaction

Nence 32
Amount -0 SepoliaETH
Gas Limit (Units 13217
Gas Used (Units) 12217

14.29484067
Pricrity fee (GWEI) 1.5
Total gas fee 0.002087 SepoliaETH
Max fee per gas 0.00000001% SepclicETH
Total 0.00208703 SepoliaETH

Figure 32: Deploying the exploit to Sepolia.

After confirming the exploit’s deployment on Etherscan with its link, the exploit is executed:

15

https://sepolia.etherscan.io/address/0xeefb96078cf05cdf9d943689e97fcf72bc53d542

Low level interactions

Figure 33: Executing the exploit.

The successful change of the contract’s owner is now verified:

changeOwner

Figure 34: Confirmation of successful exploit.

The flag is retrieved upon successful exploitation:

fhome/kali/proj_blockchain

s the owner???

Figure 35: Retrieving the flag after successful exploitation.

Finally, participants submit the flag on CTFd to complete the challenge:

X

Challenge 0 Solves

Guess The Owner
200

Can you make the isSolved() function return true? Can

you guess the owner???

54.175.

» Unlock Hint for 0 points

o m

Correct

Figure 36: Submitting the flag on CTFd.

16

5 Conclusion

In conclusion, our research project represents a holistic exploration into Blockchain security, encompass-
ing both theoretical foundations and hands-on practical applications. The journey from foundational
Blockchain concepts to advanced topics, coupled with an acute focus on cybersecurity, has enabled us
to delve deep into the security vulnerabilities intrinsic to Blockchain technology.

Our emphasis on Smart Contracts, Solidity, and the risks associated with improper Blockchain
usage underscores the critical importance of addressing vulnerabilities to maintain the Confidentiality,
Integrity, and Availability (CIA) of data, safeguarding the interests of end-users.

The bifurcation of our project into theoretical and practical sections provides a comprehensive un-
derstanding of Blockchain security. The theoretical framework, detailed in Chapter 2, elucidates the
core concepts, potential consequences, and mitigation strategies associated with identified vulnerabili-
ties. On the other hand, Chapter 4 adopts a practical approach, employing Capture The Flag (CTF)
methodologies to design, deploy, and solve challenges that exploit these vulnerabilities. By doing so, we
not only highlight the intricacies of identifying and exploiting vulnerabilities but also emphasize their
real-world implications.

Moreover, our decision to make the CTF infrastructure publicly accessible serves dual purposes. It
serves as a valuable academic resource for students and researchers seeking to understand Blockchain
security intricacies. Simultaneously, it functions as a practical tool, allowing users to engage hands-on
with the challenges and enhance their skills in safeguarding Blockchain systems.

In essence, our research project contributes to the broader knowledge landscape of Blockchain se-
curity. By combining theoretical exploration with practical application, we offer a nuanced perspective
that aids students, enthusiasts, and industry professionals alike in comprehending, mitigating, and
addressing the evolving challenges within the realm of Blockchain security.

5.1 Key Learnings and Insights

The following are the key takeaways from the project:

e Holistic Exploration: The project provides a comprehensive exploration of Blockchain security,
covering both theoretical foundations and practical applications for a well-rounded understanding.

e Smart Contracts and Solidity Emphasis: A significant emphasis is placed on Smart Con-
tracts and Solidity, highlighting associated security flaws. Understanding these vulnerabilities
is crucial for ensuring the robustness and reliability of Blockchain systems, particularly in the
context of Smart Contracts.

e Real-World Implications: The practical section employs Capture The Flag (CTF) challenges
to demonstrate the identification and exploitation of vulnerabilities, emphasizing real-world im-
plications within Blockchain systems.

e Public Accessibility of CTF Infrastructure: Making the CTF infrastructure publicly acces-
sible serves dual purposes. Firstly, it acts as a valuable academic resource, enabling students and
researchers to engage with practical challenges. Simultaneously, it serves as a tool for individuals
seeking to enhance their skills in safeguarding Blockchain systems, providing a practical learning
environment.

e Contributions to Knowledge Landscape: The research project significantly contributes to
the broader knowledge landscape of Blockchain security, offering nuanced insights through the
seamless combination of theoretical exploration and practical application. These insights ben-
efit students, enthusiasts, and industry professionals grappling with the evolving challenges in
Blockchain security.

e Comprehensive Resource for Learning: Designed intentionally, the project serves as a com-
prehensive resource for learning about Blockchain security intricacies. Its dual nature, encom-
passing both theoretical insights and practical skills development, positions it as a valuable asset
for individuals looking to deepen their understanding and proficiency in this dynamic and crucial
domain.

In summary, the project explores Blockchain security comprehensively, emphasizing practical ap-
plications and accessibility to enhance its utility as an educational resource and practical tool in the
knowledge landscape of Blockchain security.

17

5.2 Future Directions and Improvements

The future scope and the next steps of the project involves an expansion of Capture The Flag (CTF)
challenges to delve deeper into Solidity and Smart Contract vulnerabilities, establishing an innovative
and accessible platform for public engagement. The project aims to evolve into a comprehensive re-
source that explores a broader spectrum of real-world Blockchain security scenarios. By incorporating
advanced Solidity vulnerabilities and diverse Smart Contract challenges, participants can gain hands-on
experience in identifying, exploiting, and mitigating security risks.

The envisioned platform seeks to be open to the public, creating an inclusive space for individu-
als ranging from students to cybersecurity enthusiasts. This accessibility fosters a dynamic learning
community, encouraging active participation and knowledge-sharing. The project’s future scope also
includes the establishment of a user-friendly online platform where participants can access and play
Blockchain CTFs at their convenience, promoting continuous learning.

Regular updates to the challenges, based on emerging threats and community feedback, ensure that
the content remains relevant and aligns with the evolving landscape of Blockchain security. As the
project expands, it not only becomes a hub for practical skill development but also contributes to
the democratization of Blockchain security education, empowering a diverse audience to enhance their
understanding and proficiency in securing decentralized systems.

5.3 Acknowledgements

The development of this project involved the use of OpenAI’s GPT-4 for specific purposes, primarily to
assist with bug fixing within the Solidity code of the Smart Contracts, and to help with the correction
of language typos and formatting issues in the document. The responsibility for the content of the
submission remains solely with the authors.

18

References

[1] CTFd, “Ctfd repository,” 2023, last accessed December 23, 2023. [Online]. Available:
https://github.com/CTFd/CTFd

[2] ——, “Ctfd official website,” 2023, last accessed December 23, 2023. [Online|. Available:
https://ctfd.io/

[3] chainflag, “Solidetf,” 2023, last accessed December 23, 2023. [Online|. Available: https:
//github.com/chainflag/solidctf

[4] ——, “Solidctftemplate,” 2023, last accessed December 23, 2023. [Online]. Available:
https://github.com/chainflag/solidity-ctf-template /

[5] minaminao, “Ctf-blockchain,” 2023, last accessed December 23, 2023. [Online]. Available:
https://github.com/minaminao/ctf-blockchain

[6] Blockthreat, “Blocksec-ctfs,” 2023, last accessed December 23, 2023. [Online]. Available:
https://github.com/blockthreat /blocksec-ctfs

[7] “Remix,” 2023, last accessed December 23, 2023. [Online]. Available: https://remix.ethereum.org/

[8] “Etherscan sepolia,” 2023, last accessed December 23, 2023. [Ouline]. Available: https:
/ /sepolia.etherscan.io/

[9] “Sepolia faucet,” 2023, last accessed December 23, 2023. [Online|. Available: https:
//sepolia-faucet.pk910.de/# /Sepolia

[10] Amazon, “Aws console,” 2023, last accessed December 23, 2023. [Online|]. Available:
https://aws.amazon.com/console/

[11] “Metamask,” 2023, last accessed December 23, 2023. [Online]. Available: https://metamask.io/

https://github.com/CTFd/CTFd
https://ctfd.io/
https://github.com/chainflag/solidctf
https://github.com/chainflag/solidctf
https://github.com/chainflag/solidity-ctf-template/
https://github.com/minaminao/ctf-blockchain
https://github.com/blockthreat/blocksec-ctfs
https://remix.ethereum.org/
https://sepolia.etherscan.io/
https://sepolia.etherscan.io/
https://sepolia-faucet.pk910.de/#/Sepolia
https://sepolia-faucet.pk910.de/#/Sepolia
https://aws.amazon.com/console/
https://metamask.io/

	Introduction
	Theoretical Exploration of the Vulnerabilities
	Integer overflow
	Understanding Integer Overflow
	Integer Overflow in Solidity
	Mitigating Integer Overflow

	Misuse of tx.origin
	Understanding the misuse of tx.origin vulnerability
	The misuse of tx.origin vulnerability in Solidity
	Mitigating the misuse of tx.origin vulnerability

	Beyond the Scope

	Blockchain CTF Infrastructure Setup
	Cloud-Based Infrastructure
	Implementing a Testnet Challenge
	The Foundations
	Blockchains
	Deployment Procedure
	CTFd

	The Default Challenge: Infrastructure Interaction Overview

	Exploiting the Vulnerabilities
	Integer Overflow Challenge: Step-by-Step Walkthrough
	tx.origin Misuse Challenge: Detailed Walkthrough

	Conclusion
	Key Learnings and Insights
	Future Directions and Improvements
	Acknowledgements

